Date: 8/20 Period: 3

Name: Hrrogo
Notes 1.2: Functions and their Properties

Vocabulary

Function: A relation where every x-value is paired with a unique (one & only one) y-value.

Domain: The set of all possible inputs; x-values.

Range: the set of all possible outputs; y-values.

Vertical Line Test

A graph on the xy-plane defines f(x) = y as a function iff (if and only if) ... no Vertical line intersects the graph in more than one point.

Ex #1:

Even and Odd Functions

Graphically, even functions are symmetric about the y-axis. Algebraically, showing f(-x) = f(x)proves the function is even

Ex#2:
$$f(x) = -3x^{2} + 4$$

$$f(x) = -3x^{2} + 4$$

$$f(-x) = -3(-x)^{2} + 4$$

$$f(-x) = -3x^{2} + 4$$

$$f(-x) = f(x)$$
therefore, the function
is Even!

Graphically, odd functions are symmetric about the origin. Algebraically, showing f(-x) = -f(x) proves the function is odd.

Ex #3: $f(x) = 2x^3 - 4x$

$$f(-x) = 2(-x)^{3} - 4(-x)$$

 $f(-x) = -2x^{3} + 4x$
 $f(-x) = -f(x)$

Ex#4:
$$f(x) = 2x^3 - 3x^2 - 4x + 4$$

$$f(-x) = 2(-x)^{3} - 3(-x)^{2} - 4(-x) + 4$$

$$f(-x) = -2x^{3} - 3x^{2} + 4x + 4$$

$$f(-x) \neq f(x) \neq f(-x) \neq -f(x)$$
So it is Neither

End Behavior

Tells us how the function (y-values) behaves as it goes off towards the "ends" of the x-axis. End behavior asks us to determine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.

Limit Notation

(AKA: as
$$x \to c$$
, $f(x) \to L$)

$$\lim_{x \to c} f(x) = L$$

$$\lim_{x \to c^{-}} f(x) = L$$

$$\lim_{x \to c^{+}} f(x) = L$$

"the limit as x approaches c of f(x) is equal to L"

"the limit as x approaches c from the <u>left</u> of f(x) is equal to L"

"the limit as x approaches c from the <u>right</u> of f(x) is equal to L"

Ex #6: Determine the limits where
$$f(x) = \frac{1}{x}$$

Asymptotes

Ex #7: Use a graphing calculator to graph $f(x) = \frac{2x^2}{4-x^2}$. Sketch below.

$$\begin{array}{c} -2 \times ^2 \times ^2 \times (4 - \times ^2) \end{array}$$

a) Determine the horizontal asymptote and write them as limits.

$$V = -2$$

$$\lim_{X \to \infty} z - 2$$

$$\lim_{X \to \infty} z - 2$$

Finding Domain Algebraically

Square Roots:

make sure stuff inside 20.

Rationals (fractions):

make sure is denominator #0.

Ex #8 Find the domain of
$$f(x) = \sqrt{X + 2}$$

$$x + 2 = 0$$
 $x \ge -2$ inequality notation

ind the domain of
$$f(x) = \sqrt{x+2}$$
 $x+2 \ge 0$
 $x \ge -2$

inequality notation

 $x \ne -3$

Ex #9: Find the domain of $f(x) = \frac{x+2}{x+3}$
 $x \ne -3$

$$[-2,\infty)$$
 interval notation $[-\infty,-3)$ $U(-3,\infty)$

Ex#4: Find the domain of
$$f(x) = \frac{-\sqrt{x-4}}{x^2-2x-15} = \frac{-\sqrt{x-4}}{(x+3)(x-5)}$$
 $x-4 \ge 0$
 $x = -\sqrt{x-4}$
 x

the entire graph without taking pencil off You can draw

otherwise the function is _______ discontinuous____ at the location where the pencil came off of the paper.

Types of Discontinuity

A function is continuous at x = a iff $f(a) = \lim_{x \to a} f(x)$.

Increasing and Decreasing Functions

Functions are either decreasing, increasing, constant, or a combination of the three. Read the graph

from left to right.

increasing: (-2,-1) U(1,2) decreasing: $\times (-\infty, -2) \cup (2, \infty)$ constant: (-1, 1)

Boundedness
The function is bounded below if it doesn't go lower than a certain number.

The function is bounded above if it doesn't go higher than a certain number. The function is bounded if it is bounded above and bounded below. Otherwise, the function is unbounded of not bounded. Extrema - Minimums and Maximums Local (or relative) extrema located at f(c) are the minimum and maximum values for a particular interval around c. If f(c) is the lowest or highest value in the entire range, then they are considered absolute extrema (or global extrema). $local_{max}$ absolute $local_{max}$ no absolute minimum