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Notes 1.2: Functions and their Properties
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Vertical Line Test |
A graph on the xy-plane defines f(x) = y as a function iff (if and only if) ... 1O €y Jﬂ ges

e mtersects -the graph in nove than sne pome‘.

Ex #1: A\ « Y
S CadBy
: < > X < —_ X
4
‘L-é & NO= &
‘ﬁ,\\f\ CHOH o~ ’G,\ »
V\C‘\‘\On >
i éﬂ,‘_—w

Even and Odd Functions
Graphically, even functions are symmetric about the y-axis. Algebraically, showing(f (—=x) = f(x)™
‘g':r_oy;g_s_the functlon is even. >
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Graphically, odd functions are symmetric about the origin. Algebraically, showi :
function is odd. 3
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how the function (y-values) behaves as it goes off towards the “ends” of the x-axis. End
Raielepetemine liny f(x) and lim f(x).
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“the limit as x approaches c of f(x) is equal to L"
“the limit as x approaches ¢ from the left of f(x) is equal to L"
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Ex #5: Determin

the limits }llh,ere f(x) =x? Ex #6: Determine the limits where f(x) = -
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Ex #7: Use a graphing calculatorto graph f(x) = —;. Sketch below.
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: . XS0
MR S
‘ =20 T L
Determine the vertical asymptote(s) and write them as limits.
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Finding Domain Al ebralcall

Square Roots:

make suve smpﬁ sl e

Rationals (fractions):
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Continuous Functions
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off of the paper.

Types of Dis’{:ohtinuity
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Efunction is continuous at x = a iff f(a) = ,1}5}1 f(x).
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Increasing and Decreasing Functions
Functions are either decreasing, increasing, constant, or a combination of the three. Read the graph

J‘rom left to right.
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f it doesn’t go lower than a certain number.
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The function is bounded/above if it doesn't go higher than a certain number.
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5 frema Minimums and Maximums
Local (or relgtlve) extrema located at f(c) are the minimum and maximum values for a particular
| around c. If f(c) is the lowest or highest value m the entire range, then they arg considered
solute extrema (or global extrema).  [ocaf yyax abp|te
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