If you just want a formula to memorize for the determinant of

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

then that is simply: $\operatorname{det}[A]=|A|=a(e i-f h)-b(d i-f g)+c(d h-e g)$.
If you want to know what we're doing with that formula, keep reading.
For anything larger than a $2 \times 2$ you must break the determinant down into a series of smaller $2 \times 2$ determinantes. You must also alternate signs between the smaller $2 \times 2$ determinants starting with a positive sign.

Step 1: Starting off with $a$, ignore everything in the first row and first column and multiply $a$ by the determinant of what is left over. In other words:

$$
a \cdot \operatorname{det}\left[\begin{array}{ll}
e & f \\
h & i
\end{array}\right]
$$

Step 2: Move on to $b$, ignore everything in the second row and second column and multiply $b$ by the determinant of what is left over. Subtract this from what you got in step 1. In other words:

$$
-b \cdot \operatorname{det}\left[\begin{array}{ll}
d & f \\
g & i
\end{array}\right]
$$

Step 3: Lastly working with $c$, ignore everything in the third row and third column and multiply $c$ by the determinant of what is left over. Add this to what you got in step 2 . In other words:

$$
+c \cdot \operatorname{det}\left[\begin{array}{ll}
d & e \\
g & h
\end{array}\right]
$$

If you ever run into taking the determinant of a $4 \times 4$, the method above still holds and step 4 would involve subtracingt. The issue would be having to take the determinants of $3 \times 3$ matrices, where you would have to start over and break them down into various $2 \times 2$ determinants.

If you'd rather watch a video about it: https://www.youtube.com/watch?v=eYjSu xXUUQ.

