Notes: 30.1 Rational Equations and Word Problems

0.5 Factor denominators

- 1. Identify restrictions
- 2. Multiply all terms so that denominators eliminate
- 3. Solve the Algebra 1 equation
- 4. Check that your solutions aren't restricted values (if they are, they are extraneous solutions)

Solve the following:	
1) $\frac{x^2-4}{x+1} = x+5$ $X \neq -1$	2) $\frac{2}{x} - \frac{1}{x+2} = \frac{3}{x}$ $\times \neq 0, -2$
x2-4 (x+1) = (x+5)(x+1)	$\frac{2}{x}$ \times $(x+2)-\frac{1}{x+2}$ \times $(x+2)=\frac{3}{x}$ \times $(x+2)$
711 - VZ+6×+5	2(x+2) - 1(x) = 3(x+2)
$\frac{1}{\sqrt{1-4}} = \frac{1}{\sqrt{1-4}} + (0 \times + 5)$	2x+4-x=3x+6 x+4=3x+6
-4 = 6 x + 8 -5	-2 = 2x
	X = -1
$\frac{-q}{6} = 6 \times 6$ $\left[x = -3/2 \right]$	
X = -3/2	
3) $\frac{1}{x} - \frac{2x}{x+2} = \frac{x-6}{x(x+2)}$ $\times \neq 0, -2$	4) $\frac{1}{x} - \frac{x-1}{x^2 + x} = \frac{x-1}{x+1}$ $\times \neq 0$, - \
-x(x+2) = x-6 x(x+2) = x-6 x(x+2)	$\frac{1}{x}(x+1) - \frac{x-1}{x(x+1)} = \frac{x-1}{x+1} \times (x+1)$
XXX XXXX	1(x+1)-(x-1)=(x-1)x
1(x+2) - 2x(x) = (x-6) $x+2-2x^2 = x-6$	$x+1-x+1=x^2-x$
$0 = 2x^{2} - 8$ $0 = 2(x^{2} - 4)$ $2 = 2$	$7 = \times $ $- \times $ $- $
$0 = 2(x^2 - 4)$ 2 0	$0 = x^2 - x - 2 - 3$
0=2(x+2(x-2)	$O = (X - 2X \times +1)$
$\underbrace{X = -2 X = 2}_{\text{ext}}$	IX=2 or X=-1 Lext.
$5) \frac{3}{x+1} + \frac{2}{x-4} = \frac{4x-11}{x^2-3x-4} - 4 $	6) $\frac{2}{x} - \frac{4}{x+1} = 3$ $\times \neq 0, -1$
3 (X-11) + 2 (X-11)(X+1) = 4 x-11 (X+1)(X-11)	$\frac{2}{2}X(X+1) - \frac{4}{241}X(X+1) = 3X(X+1)$
3(x-4) + 2(x+1) = (4x-11)	2(x+1) - 4(x) = 3x(x+1)
3x-12+2x+2 = 4x-11 5x-10 = 4x-11	$2 \times +2 - 4 \times = 3 \times ^{2} + 3 \times ^{-6}$
X = -1	$0 = 3x^{2} + 5x - 2 (2) \frac{6}{3} + \frac{1}{5} = 3$
Cext	$0 = (x+2)(3x-1)$ $x = -2 x = \frac{1}{3}$
No solution	X=-2 X=3
110 3000	

Word Problems (about working fractions of a job)

Jesse's coach requires the team to help prepare the baseball diamond at school. Jesse and Cody, working together, can clean up the infield in 2 hours. If Jesse worked alone, it would take him 5 hours. To figure ou how long it would take Cody to prepare the infield by himself, you must consider the portion of the job that can be completed in 1 hour.

7) If it takes Jesse 5 hours to complete the job, what fraction could he complete in 1 hour, assuming he works at an even pace?

fraction could he complete in 1 hour, assuming he works at an even pace?

Jesse

t cody

9) Jesse and Cody, working together, can clean up the infield in 2 hours. What fraction of the job can they complete in 1 hour if they work together? 10) Now write an equation using the verbal model below:

If it takes Cody t hours to complete the job, what

2 together Jesse's work + Cody's work = Together work in 1 hour in 1 hour in 1 hour $\frac{1}{4}$ + $\frac{1}{4}$ = $\frac{1}{7}$

11) Solve the equation from #8 to determine how long it would take Cody to complete the job if he worked alone. $\not\vdash \neq \bigcirc$

12) Garrett has cleaned up the infield on his own before, and it took him 4 hours. How long will it take all three, working together, to prepare the infield for a game?

★

✓

 $\frac{1}{8} 5 \pm (2) + \frac{1}{8} 5 \pm (2) = \frac{1}{2} 5 \pm (2)$ $2 \pm 10 = 5 \pm 10$ $10 = 3 \pm 10$ $10/3 = \pm 10$ $1 + \text{takes Cody } \frac{10}{3} \text{ hours } = 3\frac{1}{3}$

hours = 3 hrs & 20 min

to clean up the infield.

 $\frac{1}{8}(\frac{10}{3})4X + \frac{1}{142}5(\frac{10}{3})4X + \frac{1}{142}5(\frac{10}{3})4X + \frac{1}{142}5(\frac{10}{3})4X + \frac{1}{142}5(\frac{10}{3})4X + \frac{10}{142}5(\frac{10}{3})4X + \frac{10}{142}5(\frac{10}{3})4X$

 $X = \frac{4}{3} = |\frac{1}{3}|$ Together it will take them